Polyurethane is one of the world’s most widely used plastic materials, but it’s often overlooked in our daily lives. Yet whether you’re at home, at work or in your vehicle, it is usually not far away, with common end uses ranging from mattresses and furniture cushioning to building insulation, car parts and even the soles of shoes.

But as with other plastics that go largely unrecycled, the widespread use of  is generating concerns about its environmental impact. To better understand the opportunities for recovering polyurethane for recycling and for replacing the chemicals used in its production with plant-based alternatives, researchers from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, Northwestern University and The Dow Chemical Company joined together to conduct the first comprehensive assessment of “Material Flows of Polyurethane in the United States.” The study was recently published in the journal Environmental Science & Technology.

“The goal was to understand how linear versus how circular is our use of polyurethanes in the United States,” explained co-author Jennifer Dunn, who is the associate director of Northwestern’s Center for Engineering Sustainability and Resilience and a member of the Program on Plastics, Ecosystems and Public Health at the Institute for Sustainability and Energy at Northwestern (ISEN). “We also wanted to see if there are opportunities to enhance circularity and increase the bio-based content of polyurethanes.”

A linear economy is one in which raw materials are used to make products and then are typically thrown away at the end of their lives. In a circular economy, those same materials are recovered and reused. This limits the need to extract additional natural resources, like fossil fuels, while reducing the amount of waste sent to landfills.

Dunn, who is also an associate professor of chemical and biological engineering at Northwestern’s McCormick School of Engineering, said that while researchers expected to find a largely linear system for polyurethanes, “seeing it through a materials flow perspective, from the starting materials to the end of life, it was just blatantly linear.”

According to co-author Troy Hawkins, who leads the Fuels and Products Group in Argonne’s Systems Assessment Center, the study highlighted a number of complexities that affect how and when polyurethanes can be recovered and recycled.

But as with other plastics that go largely unrecycled, the widespread use of  is generating concerns about its environmental impact. To better understand the opportunities for recovering polyurethane for recycling and for replacing the chemicals used in its production with plant-based alternatives, researchers from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, Northwestern University and The Dow Chemical Company joined together to conduct the first comprehensive assessment of “Material Flows of Polyurethane in the United States.” The study was recently published in the journal Environmental Science & Technology.

“The goal was to understand how linear versus how circular is our use of polyurethanes in the United States,” explained co-author Jennifer Dunn, who is the associate director of Northwestern’s Center for Engineering Sustainability and Resilience and a member of the Program on Plastics, Ecosystems and Public Health at the Institute for Sustainability and Energy at Northwestern (ISEN). “We also wanted to see if there are opportunities to enhance circularity and increase the bio-based content of polyurethanes.”

A linear economy is one in which raw materials are used to make products and then are typically thrown away at the end of their lives. In a circular economy, those same materials are recovered and reused. This limits the need to extract additional natural resources, like fossil fuels, while reducing the amount of waste sent to landfills.

Dunn, who is also an associate professor of chemical and biological engineering at Northwestern’s McCormick School of Engineering, said that while researchers expected to find a largely linear system for polyurethanes, “seeing it through a materials flow perspective, from the starting materials to the end of life, it was just blatantly linear.”

According to co-author Troy Hawkins, who leads the Fuels and Products Group in Argonne’s Systems Assessment Center, the study highlighted a number of complexities that affect how and when polyurethanes can be recovered and recycled.


Post time: Dec-16-2021